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Note on a solitary wave in a slowly varying channel 
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Johnson's (1973) description of a solitary wave in water of slowly varying depth 
is extended to a channel of slowly varying breadth and depth b and d on the 
assumption that the scale for the variation of b and d is large compared with 
d%/ag. It is inferred from conservation of energy that the amplitude of the wave 
is proportional to  b-gd-1 (cf. Green's law aoc b-3d-f for long waves of small 
amplitude). Comparison with experiment (Perroud 1957) yields fairly satis- 
factory agreement for a linearly converging channel of constant depth. The 
agreement for a linearly diverging channel is not satisfactory, but the experi- 
mental data are inadequate t o  support any firm conclusion. 

A solitary wave of amplitude a, in water of uniform depth do may be described 
by (Lamb 1932, $252) 

where lo = 2(d;/3%~)*, Co = (gdo)*, Pa, b )  

a = a&, < 1, (3) 

and error factors of 1 + O(a, a2) are implicit in (1 a, b ) .  The form of ( l ) ,  together 
with Green's analysis of the corresponding linear problem (Lamb 1932, $185),  
suggests that  a solitary wave in a channel of slowly varying breadth and depth 
b(x) and d(x) may be described by 

where a(x )  is a slowly varying amplitude. 
The validity of (4) for a channel of constant breadth follows directly from 

Johnson's (1  973) asymptotic analysis, which also implies that  : the error factor 
for (4a)  is 1 + O(a,  h/a), where 

I ,  is the scale of the slow variation, and 1 ,  is given by ( 2 a )  with a, and do as 
reference values of a and d ;  the approximation is not uniformly valid for either 
X+OO or t+m (so that the wave departs significantly from the sech2 profile 
in the region of small displacement); a must be inversely proportional to d in 

h = l?,/Z, < a, (5) 
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consequence of the matching requirement between (4), qua inner approxima- 
tion, and the corresponding outer approximation. 

The error in neglecting the transverse variation of 7, which arises from the 
requirement that the ratio of the transverse velocity to the axial velocity a t  the 
side walls must be & db/dx,  may be estimated by considering oblique reflexion 
of a solitary wave at a plane wall. Regular reflexion occurs if and only if 8, > (3a)4, 
where Oi is the angle of incidence (Miles 1 9 7 7 ~ ) .  Mach reflexion occurs if 
0, < (3a)4, and the relative strength of the reflected wave is Oi/(3a)4 (Miles 1977 b) .  
This, together with the closely related result that a solitary wave moving along 
a wall cannot be turned through a convex angle greater than (3a)4, implies the 
restriction 

which is typically weaker than the restrictions, especially ( 5 ) ,  already implicit 
in the asymptotic approximation; accordingly (4) remains valid for a channel of 
slowly varying breadth. 

Johnson’s analysis may be generalized to establish the variation of a with b ;  
however, the desired result may be inferred more directly from conservation of 
energy, which implies the conservation of a2bl for a wave of amplitude a and 
length 1 in a channel of width b [cf. Rayleigh’s derivation of Green’s law (Lamb 
1932, 3 185)]. Combining this result with Zrx dB/a (see above) then implies the 
conservation of (ad)fb,  from which we infer that 

Idb/dxI < ( 3 4 4  (6) 

where a,, b, and do are reference values. 
We remark that (7 )  implies 

(8) 

(9% b )  

(3ga)a co b -4 d -8 
2d =1,(b,) (&) 

y ( x , t )  = asech2 (;, 3 ( jo2f-t))~ : = 

in (4a ) ,  so that 

if bd) is constant. Asymptotic analysis reveals that, in this rather curious case, 
the error factor is 1 + O(a, A )  and that the approximation is uniformly valid with 
respect to both x and t .  

We conclude that the local speed of a solitary wave in a slowly varying channel 
is simply {g(d and that Green’s law for long waves of small amplitude, 
aot b-4d-4 (Lamb 1932, 5 185), is replaced by a x  6-*d-1 if the scale for the 
variation of breadth and depth, say l , ,  is large compared with dP/aB. It may be, 
as often happens for approximations of Green’s type, that (6) has a greater range 
of validity than the restriction (5) appears to suggest, but it must not be over- 
looked that a solitary wave advancing into water of decreasing depth may 
undergo fission if 1, is comparable with d , / d  (see Madsen & Mei 1969; Johnson 
1973). 

Comparison with experiment 

Perroud (1957) measured the amplitude variation of a solitary wave in two 
linearly converging channels and one linearly diverging channel of constant 
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FIGURE 1. Amplitude of a solitary wave in a converging channel for which b/d decreases 
linearly from 5.2 to 0 as x/dincreases from 0 to 50. -, u/uo = (b/b,)-t; ---, a/ao = (b/b,)-8. 
Observed data: +, a = ao/d = 0.18; V, a = 0.24; R, a = 0.35; A, a = 0.47; os a = 0.50. 
The data for x/d = 35 appear to have been significantly affected by partial breaking. 

Xld 
FIGURE 2. Amplitude of a solitary wave in a converging channel for which b/d decreases 
linearly from 3.75 to 1.7 as x/d increases from 0 to 50. -, a/uo = (b/$)-t; ---, 
a/ao = (b/b,)-*.  Observed data: +, a = a,/d = 0.15; V, a = 0.20; 0, a = 0.35; A, a = 0.45; 
0, a = 0.50. The data for x/d = 40 and 47 a.ppear to ham been significantly affected by 
wall friction. 

depth and compared his results with Green's law, a a  b d .  (He also compared 
them with a a  b-2, which he appears to have deduced from the fact that l a  a-4 
for a solitary wave; however, I am unable to follow his argument.) The con- 
traction and expansion angles for the channels were roughly 6' = 0.1 rad, whilst 
the range of a was 0.18-0.50, so that (5) appears to have been marginally to well, 
and (7) well, satisfied; on the other hand 01 < 1 is only marginally satisfied at the 
higher amplitudes. Unfortunately his results, which are reproduced in figures 
1-3, do not appear t G  dist,inguish definitely between Green's law and the present 
prediction, a a  b-f. 
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FIGURE 3. Amplitude of a. solitary wave in a diverging channel for which b/d increases 
linearly from 5.4 to 12 asx/d increases from 0 to 50. ---, a/ao = (b/bo)-*; ---, ./ao = (b/bo)-6. 
Observed data: V, a = ao/d = 0.20; 17, a = 0.35; A, a = 0.45; 0, a = 0.50. 

The agreement between this prediction and the data for the converging 
channels (figures 1 and 2) appears to be fairly satisfactory (and better than that 
for Green’s law, at  least for the smaller amplitudes) if allowance is made for 
partial breaking at high amplitudes (as observed by Perroud) and for wall 
friction when the breadth of the channel is comparable with the depth. The 
agreement for the diverging channel (figure 3) is not satisfactory for reasons that 
are not clear (to me), although Perroud does suggest rather obliquely that his 
measurements are less accurate for smaller amplitudes (such as necessarily occur 
in the diverging channel). If a does vary less rapidly than b-8, the energy argu- 
ment would suggest that 1 does not vary like a-3, i.e. that the solitary wave does 
not retain the Boussinesq profile. 
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